Machine Learning often called Artificial Intelligence or AI is one of the most exciting areas of technology at the moment. We see daily news stories that herald new breakthroughs in facial recognition technology self driving cars or computers that can have a conversation just like a real person.
Machine Learning technology is set to revolutionise almost any area of human life and work and so will affect all our lives and so you are likely to want to find out more about it. Machine Learning has a reputation for being one of the most complex areas of computer science requiring advanced mathematics and engineering skills to understand it.
While it is true that working as a Machine Learning engineer does involve a lot of mathematics and programming we believe that anyone can understand the basic concepts of Machine Learning and given the importance of this technology everyone should. The big AI breakthroughs sound like science fiction but they come down to a simple idea: the use of data to train statistical algorithms.
In this course you will learn to understand the basic idea of machine learning even if you don't have any background in math or programming. Not only that you will get hands on and use user friendly tools developed at Goldsmiths University of London to actually do a machine learning project: training a computer to recognise images. This course is for a lot of different people.
It could be a good first step into a technical career in Machine Learning after all it is always better to start with the high level concepts before the technical details but it is also great if your role is non-technical. You might be a manager or other non-technical role in a company that is considering using Machine Learning.
You really need to understand this technology and this course is a great place to get that understanding. Or you might just be following the news reports about AI and interested in finding out more about the hottest new technology of the moment. Whoever you are we are looking forward to guiding you through you first machine learning project.
WEEK 1
6 hours to complete
Machine learning
In this week you will learn about artificial intelligence and machine learning techniques. You will learn about the problems that these techniques address and will have practical experience of training a learning model.
6 videos (Total 27 min) 2 readings 3 quizzes
WEEK 2
3 hours to complete
Data Features
This week you will learn about how data representation affects machine learning and how these representations called features can make learning easier.
7 videos (Total 36 min)
WEEK 3
6 hours to complete
Machine Learning in Practice
In this topic you will get ready to do your own machine learning project. You will learn how to test a machine learning project to make sure it works as you want it to. You will also think about some of the opportunities and dangers of machine learning technology.
6 videos (Total 37 min) 3 readings 1 quiz
WEEK 4
7 hours to complete
Your Machine Learning Project
In this final topic you will do your own machine learning project: collecting a dataset training a model and testing it.
4 videos (Total 16 min) 2 readings 2 quizzes
Tham gia đánh giá khóa học
Nếu bạn đã học qua khóa học này thì mời bạn tham gia đóng góp ý kiến và đánh giá để cộng đồng bạn học có thêm thông tin tham khảo.
Cung cấp bởi: Coursera / University of London
Thời lượng: 22 giờ
Ngôn ngữ giảng dạy: Tiếng Anh
Chi phí: Miễn phí / 0
Đối tượng: Beginner
Thông tin về nhà cung cấp
Coursera (/ kərˈsɛrə /) là một nền tảng học tập trực tuyến toàn cầu được thành lập vào năm 2012 bởi 2 giáo sư khoa học máy tính của đại học Stanford là Andrew Ng và Daphne Koller, nền tảng này cung cấp các khóa học trực tuyến (MOOC) cho cộng đồng người học online.
Coursera hợp tác với các trường đại học danh tiếng tại Bắc Mỹ và trên khắp thế giới, cùng với nhiều tổ chức khác để cung cấp các khóa học trực tuyến chất lượng, theo chuyên ngành và được cấp chứng chỉ trong nhiều lĩnh vực như kỹ thuật, khoa học dữ liệu, học máy, toán học, kinh doanh, khoa học máy tính, tiếp thị kỹ thuật số, nhân văn, y học, sinh học, khoa học xã hội , và nhiều ngành khác.