Browser-based Models with TensorFlow.js

Rated 2.6 out of 5

Bringing a machine learning model into the real world involves a lot more than just modeling. This Specialization will teach you how to navigate various deployment scenarios and use data more effectively to train your model.

In this first course, you’ll train and run machine learning models in any browser using TensorFlow.js. You’ll learn techniques for handling data in the browser, and at the end you’ll build a computer vision project that recognizes and classifies objects from a webcam.

This Specialization builds upon our TensorFlow in Practice Specialization. If you are new to TensorFlow, we recommend that you take the TensorFlow in Practice Specialization first. To develop a deeper, foundational understanding of how neural networks work, we recommend that you take the Deep Learning Specialization.

5 hours to complete
Introduction to TensorFlow.js
Welcome to Browser-based Models with TensorFlow.js the first course of the TensorFlow for Data and Deployment Specialization. In this first course we’re going to look at how to train machine learning models in the browser and how to use them to perform inference using JavaScript. This will allow you to use machine learning directly in the browser as well as on backend servers like Node.js. In the first week of the course we are going to build some basic models using JavaScript and we'll execute them in simple web pages.
11 videos (Total 30 min) 7 readings 3 quizzes

4 hours to complete
Image Classification In the Browser
This week we'll look at Computer Vision problems including some of the unique considerations when using JavaScript such as handling thousands of images for training. By the end of this module you will know how to build a site that lets you draw in the browser and recognizes your handwritten digits!
8 videos (Total 27 min) 5 readings 2 quizzes

5 hours to complete
Converting Models to JSON Format
This week we'll see how to take models that have been created with TensorFlow in Python and convert them to JSON format so that they can run in the browser using Javascript. We will start by looking at two models that have already been pre-converted. One of them is going to be a toxicity classifier which uses NLP to determine if a phrase is toxic in a number of categories; the other one is Mobilenet which can be used to detect content in images. By the end of this module you will train a model in Python yourself and convert it to JSON format using the tensorflow.js converter.
12 videos (Total 28 min) 7 readings 2 quizzes

4 hours to complete
Transfer Learning with Pre-Trained Models
One final work type that you'll need when creating Machine Learned applications in the browser is to understand how transfer learning works. This week you'll build a complete web site that uses TensorFlow.js capturing data from the web cam and re-training mobilenet to recognize Rock Paper and Scissors gestures.
11 videos (Total 26 min) 3 readings 2 quizzes

Tham gia đánh giá khóa học

Nếu bạn đã học qua khóa học này thì mời bạn tham gia đóng góp ý kiến và đánh giá để cộng đồng bạn học có thêm thông tin tham khảo.

Cung cấp bởi: Coursera /

Thời lượng: 18 giờ
Ngôn ngữ giảng dạy: Tiếng Anh
Chi phí: Miễn phí / 0
Đối tượng: Intermediate

Thông tin về nhà cung cấp

Coursera (/ kərˈsɛrə /) là một nền tảng học tập trực tuyến toàn cầu được thành lập vào năm 2012 bởi 2 giáo sư khoa học máy tính của đại học Stanford là Andrew NgDaphne Koller, nền tảng này cung cấp các khóa học trực tuyến (MOOC) cho cộng đồng người học online.

Coursera hợp tác với các trường đại học danh tiếng tại Bắc Mỹ và trên khắp thế giới, cùng với nhiều tổ chức khác để cung cấp các khóa học trực tuyến chất lượng, theo chuyên ngành và được cấp chứng chỉ trong nhiều lĩnh vực như kỹ thuật, khoa học dữ liệu, học máy, toán học, kinh doanh, khoa học máy tính, tiếp thị kỹ thuật số, nhân văn, y học, sinh học, khoa học xã hội , và nhiều ngành khác.

Các khóa học cùng chủ đề

Visual Perception for Self-Driving Cars

This course will introduce you to the main perception tasks in autonomous driving, static and dynamic object detection, and will survey common computer vision methods for robotic perception. By the...

Motion Planning for Self-Driving Cars

This course will introduce you to the main planning tasks in autonomous driving, including mission planning, behavior planning and local planning. By the end of this course, you will be...

Capstone: Autonomous Runway Detection for IoT

This capstone project course ties together the knowledge from three previous courses in IoT though embedded systems: Development of Real-Time Systems Web Connectivity & Security and Embedded Hardware and Operating...

Leave a Reply

Your email address will not be published. Required fields are marked *

Scroll to Top