Black-box and White-box Testing

2.4
2.4 rating

After completing this course, learners will have an understanding of a variety of black-box and white-box testing techniques. The learner will have put this understanding into practice, creating effective sets of test cases (called a test suite) to properly exercise software for defect finding. The learner will have examined requirements for testability, created an oracle for automated testing, assessed fault-finding effectiveness of test suites, and generated inputs using a variety of techniques.

After completing this course, you will be able to:
- evaluate testability of requirements
- define testable units within a program specification
- apply black-box test input selection methods - specifically boundary-value analysis, fuzzing, and random selection - and select the method most-suited to achieve the given testing objective
- assess the fault-finding effectiveness of a functional test suite using mutation testing
- use category partitioning to develop automated functional tests (with Cucumber) based on a given software specification
- create an expected-value oracle from a program description to use within the generated tests

In order to do well in this course, you should have experience with an OOP language (like Java), have an IDE installed (e.g., Eclipse), and be familiar with testing terminology (see Intro to Software Testing course within this specialization). we also expect a familiarity with the Software Development Lifecycle and the context in which the testing stage sits.

This course is primarily aimed at those learners interested in any of the following roles: Software Engineer, Software Engineer in Test, Test Automation Engineer, DevOps Engineer, Software Developer, Programmer, Computer Enthusiast.

WEEK 1
2 hours to complete
Module 1: Introduction
In this module we will learn about the basics of testing adequacy as well as the factors that influence testing effectiveness and how we quantify these metrics.
8 videos (Total 66 min) 1 reading 7 quizzes

WEEK 2
3 hours to complete
Module 2: Black and White-box Techniques
In this module we will learn a variety of testing techniques that can be used in both white-box and black-box testing strategies.
14 videos (Total 111 min)

WEEK 3
7 hours to complete
Module 3: Requirements-Based Testing
In this module we focus on requirements-based testing. We review a set of requirements from a testing perspective and then move on to a more sophisticated way of writing requirements: structured requirements using the tool Cucumber.
10 videos (Total 57 min)

WEEK 4
7 hours to complete
Performing Black and White Box Testing with Cucumber
In this module we go further in using the Cucumber toolset in order to implement a variety of testing strategies against two example projects.
7 videos (Total 79 min)


Tham gia đánh giá khóa học

Nếu bạn đã học qua khóa học này thì mời bạn tham gia đóng góp ý kiến và đánh giá để cộng đồng bạn học có thêm thông tin tham khảo.

Cung cấp bởi: Coursera /  University of Minnesota

Thời lượng: 19 giờ
Ngôn ngữ giảng dạy: Tiếng Anh
Chi phí: Miễn phí / 0
Đối tượng: Intermediate

Thông tin về nhà cung cấp

Coursera (/ kərˈsɛrə /) là một nền tảng học tập trực tuyến toàn cầu được thành lập vào năm 2012 bởi 2 giáo sư khoa học máy tính của đại học Stanford là Andrew NgDaphne Koller, nền tảng này cung cấp các khóa học trực tuyến (MOOC) cho cộng đồng người học online.

Coursera hợp tác với các trường đại học danh tiếng tại Bắc Mỹ và trên khắp thế giới, cùng với nhiều tổ chức khác để cung cấp các khóa học trực tuyến chất lượng, theo chuyên ngành và được cấp chứng chỉ trong nhiều lĩnh vực như kỹ thuật, khoa học dữ liệu, học máy, toán học, kinh doanh, khoa học máy tính, tiếp thị kỹ thuật số, nhân văn, y học, sinh học, khoa học xã hội , và nhiều ngành khác.

Các khóa học cùng chủ đề

Visual Perception for Self-Driving Cars

This course will introduce you to the main perception tasks in autonomous driving, static and dynamic object detection, and will survey common computer vision methods for robotic perception. By the...

Motion Planning for Self-Driving Cars

This course will introduce you to the main planning tasks in autonomous driving, including mission planning, behavior planning and local planning. By the end of this course, you will be...

Capstone: Autonomous Runway Detection for IoT

This capstone project course ties together the knowledge from three previous courses in IoT though embedded systems: Development of Real-Time Systems Web Connectivity & Security and Embedded Hardware and Operating...

Leave a Reply

Your email address will not be published. Required fields are marked *

Scroll to Top