Algorithmic Thinking (Part 2)

2.4
2.4 rating

Experienced Computer Scientists analyze and solve computational problems at a level of abstraction that is beyond that of any particular programming language. This two-part class is designed to train students in the mathematical concepts and process of "Algorithmic Thinking", allowing them to build simpler, more efficient solutions to computational problems.

In part 2 of this course, we will study advanced algorithmic techniques such as divide-and-conquer and dynamic programming. As the central part of the course, students will implement several algorithms in Python that incorporate these techniques and then use these algorithms to analyze two large real-world data sets. The main focus of these tasks is to understand interaction between the algorithms and the structure of the data sets being analyzed by these algorithms.

Once students have completed this class, they will have both the mathematical and programming skills to analyze, design, and program solutions to a wide range of computational problems. While this class will use Python as its vehicle of choice to practice Algorithmic Thinking, the concepts that you will learn in this class transcend any particular programming language.

WEEK 1
3 hours to complete
Module 3 - Core Materials
Sorting searching big-O notation the Master Theorem
13 videos (Total 147 min) 2 readings 1 quiz

WEEK 2
5 hours to complete
Module 3 - Project and Application
Closest pairs of points clustering of points comparison of clustering algorithms
4 readings

WEEK 3
2 hours to complete
Module 4 - Core Materials
Dynamic programming running time of DP algorithms local and global sequence alignment
7 videos (Total 87 min)

WEEK 4
4 hours to complete
Module 4 - Project and Application
Computation of sequence alignments applications to genomics and text comparison
1 video (Total 8 min) 3 readings 2 quizzes


Tham gia đánh giá khóa học

Nếu bạn đã học qua khóa học này thì mời bạn tham gia đóng góp ý kiến và đánh giá để cộng đồng bạn học có thêm thông tin tham khảo.

Cung cấp bởi: Coursera /  Rice University

Thời lượng: 14 giờ
Ngôn ngữ giảng dạy: Tiếng Anh
Chi phí: Miễn phí / 0
Đối tượng: Intermediate

Thông tin về nhà cung cấp

Coursera (/ kərˈsɛrə /) là một nền tảng học tập trực tuyến toàn cầu được thành lập vào năm 2012 bởi 2 giáo sư khoa học máy tính của đại học Stanford là Andrew NgDaphne Koller, nền tảng này cung cấp các khóa học trực tuyến (MOOC) cho cộng đồng người học online.

Coursera hợp tác với các trường đại học danh tiếng tại Bắc Mỹ và trên khắp thế giới, cùng với nhiều tổ chức khác để cung cấp các khóa học trực tuyến chất lượng, theo chuyên ngành và được cấp chứng chỉ trong nhiều lĩnh vực như kỹ thuật, khoa học dữ liệu, học máy, toán học, kinh doanh, khoa học máy tính, tiếp thị kỹ thuật số, nhân văn, y học, sinh học, khoa học xã hội , và nhiều ngành khác.

Các khóa học cùng chủ đề

Visual Perception for Self-Driving Cars

This course will introduce you to the main perception tasks in autonomous driving, static and dynamic object detection, and will survey common computer vision methods for robotic perception. By the...

Motion Planning for Self-Driving Cars

This course will introduce you to the main planning tasks in autonomous driving, including mission planning, behavior planning and local planning. By the end of this course, you will be...

Capstone: Autonomous Runway Detection for IoT

This capstone project course ties together the knowledge from three previous courses in IoT though embedded systems: Development of Real-Time Systems Web Connectivity & Security and Embedded Hardware and Operating...

Leave a Reply

Your email address will not be published. Required fields are marked *

Scroll to Top